LHC Search and Constraint on NLSP Gluino Model

Tong Li

Bartol Research Institute Department of Physics and Astronomy University of Delaware

based on works:

M. Adeel Ajaib, TL, Qaisar Shafi, Kai Wang, JHEP 1101 (2011) 028
M. Adeel Ajaib, TL, Qaisar Shafi, arXiv:1107.2573 [hep-ph]

Motivation

- dark side of MSSM: conserved R parity, LSP, dark matter
- lightest neutralino dark matter (bino, wino, higgsino): WMAP bound on $\tilde{\chi}_1^0$ LSP relic abundance

all other superparticles are assumed to have mass larger than $m_{SUSY} \approx a \cdot m_\chi$, with a=3,5,10.s.Profumo and C.E.Yaguṇa_Phys, Rev. D 70,095004 (2004)

 overproduction of relic abundance from light bino-like LSP annihilation: compensated by co-annihilation effect with a strongly-interacting particle, such as gluino,

$$ilde{g} ilde{\chi}^0_1 o qar{q}, ilde{g} ilde{g} o gg, qar{q}$$
 S.Profumo and C.E.Yaguna, Phys. Rev. D 69, 115009 (2004).

gluino-bino co-annihilation requires:
$$\frac{M_{\tilde{g}}-M_{\tilde{\chi}_{1}^{0}}}{M_{\tilde{\chi}_{1}^{0}}}\lesssim 20\%$$
, NLSP gluino

- The NLSP gluino is relatively light and its production rate can be large at the LHC, even at the early stage.
- With a NLSP gluino, the chargino as well as squarks are absent in the gluino cascade decay. The conventional search strategies (such as $\tilde{\chi}^{\pm}\tilde{\chi}^{\pm}$ or energetic jets and large missing energy) do not work here and the NLSP gluino can evade the bounds from direct searches at the Tevatron and current LHC.

NLSP Gluino Models

- The relations between gaugino masses will be crucial in understanding the nature of supersymmetry breaking and of the underlying theory at ultra-high energy scale. With NLSP gluino, one must invoke non-universal gaugino masses at M_{GUT} beyond conventional mSUGRA model ($M_3: M_2: M_1 \sim 6: 2: 1$).
- Non-universal gaugino masses are accommodated in GUT models with non-singlet F-term vevs S.P.Martin,Phys.Rev.D79(2009)095019;

```
D.Feldman, Z.Liu, P.Nath, Phys. Rev. D80(2009)015007 or enlarged supersymmetric gauge group SU(5) \times SU(3)_{Hypercolor} N.Arkani-Hamed, H.C. Cheng, T. Moroi, Phys. Lett. B387(1996)529 or partial unified model SU(4)_C \times SU(2)_L \times SU(2)_R (4-2-2),...
```

• 4-2-2 model: $SU(4)_c \times SU(2)_L \times SU(2)_R$ broken down to $SU(3)_c \times SU(2)_L \times U(1)_Y$ at GUT scale

$$\Rightarrow I_Y = \sqrt{\frac{3}{5}}I_{3R} + \sqrt{\frac{2}{5}}I_{BL}$$

 (I_{3R}, I_{BL}) are the diagonal generators of $SU(2)_R, SU(4)_c$

$$\Rightarrow \frac{1}{\alpha_{Y}(M_{GUT})} = \frac{3}{5} \frac{1}{\alpha_{I_{3R}}(M_{GUT})} + \frac{2}{5} \frac{1}{\alpha_{I_{BL}}(M_{GUT})}$$

$$\Rightarrow M_1 = \frac{3}{5}M_2 + \frac{2}{5}M_3$$
: gaugino non-universality

• matter fields: $\psi_i=(4,2,1)$ and $\psi_i^c=(\bar{4},1,2)$ MSSM Higgs: H=(1,2,2) third family Yukawa coupling $\psi\psi^cH\Rightarrow Y_t=Y_b=Y_\tau=Y_{\nu_\tau}$: Yukawa unification

I.Gogoladze,R.Khalid and Q.Shafi, Phys. Rev. D 79 (2009) 115004;I.Gogoladze,R.Khalid and Q.Shafi, Phys. Rev. D 80 (2009) 095016;I.Gogoladze,R.Khalid, S.Raza and Q.Shafi, arXiv:1008.2765[hep-ph].

 NLSP Gluino solutions in 4-2-2 model 1.5 μ < 0 (top) $m_{\tilde{g}}(\text{TeV})$ $\mu > 0$ (bottom) 0.5 $0.05 \quad 0.1 \quad 0.15 \quad 0.2 \quad 0.25 \quad 0.3 \quad 0.35 \quad 0.4$ $m_{\tilde{\chi}^0_1}({
m TeV})$ 0.8 0.6 0.4 0.20

0.1

0.2

 $m_{\tilde{\chi}_{\gamma}^0}(\text{TeV})$

0.3

0.4

6/16

	Model A $(\mu > 0)$	Model B (μ < 0)	
m ₀ (GeV)	14110	1513	
M_1 (GeV)	499.54	-479.49	
M ₂ (GeV)	832.03	-845.5	
M ₃ (GeV)	0.7945	69.53	
aneta	50.82	47.7	
A_0	-34551.2	-1668.84	
m_{H_u} (GeV)	6092.74	492.41	
m_{H_d} (GeV)	14194.5	1071.75	
$M_{\tilde{g}}$ (GeV)	329	261	
$M_{\widetilde{\chi}_1^0}$ (GeV)	284	207	
$M_{\tilde{b}_1}$ (GeV)	5294	950	
$BR(ilde{g} o bar{b} ilde{\chi}_1^0)$	76.3%	50.8%	

Table: Model parameters at GUT scale (above double line) and low scale (below double line) for two benchmark models. Note that the bino component of $\tilde{\chi}_1^0 \geq 99.9\%$.

NLSP Gluino Decay

M.A.Ajaib, T.Li, Q.Shafi and K.Wang, JHEP 1101(2011) 028.

- ullet NLSP gluino decay: $ilde{g} o qar{q} ilde{\chi}^0_1, bar{b} ilde{\chi}^0_1, g ilde{\chi}^0_1$
- The three-body decays will be suppressed if the scalar masses are too large, or due to phase space if $m_{\tilde{g}}-m_{\tilde{\chi}_1^0}$ is too small. In this model (422), displayed points have ~ 1 TeV sbottom mass and $m_{\tilde{g}}-m_{\tilde{\chi}_1^0}$ between 40 and 60 GeV. For this region, three-body decay $\tilde{g}\to b\bar{b}\tilde{\chi}_1^0$ dominates.
- If either decay $\tilde{g} \to q\bar{q}\tilde{\chi}^0_1$ or $\tilde{g} \to g\tilde{\chi}^0_1$ dominates, the final state jets are typically as soft as those from parton shower. In this case the gluino decay very likely gets buried in huge QCD background.
- Our study focused on a different region where the gluino three-body decays into two b jets dominate. Tagging jet with decaying B mesons will significantly reduce the QCD jets background.

NLSP Gluino Search at the LHC

M.A.Ajaib, T.Li, Q.Shafi and K.Wang, JHEP 1101(2011) 028

- bkg: $b\bar{b}b\bar{b}$, $jjb\bar{b}$, $b\bar{b}b\bar{b}Z$, $jjb\bar{b}Z$ with $BR(Z \to \nu\bar{\nu}) = 20\%$
- selection cuts:
 - 4 b-tagged jets with $p_T > 15$ GeV, $|\eta_j| < 2.0, \Delta R_{jj} > 0.4$,

$$\epsilon_b = 50\%, \epsilon_b = 1/30, \cancel{E}_T > 40 \text{ GeV}$$

CDF Collaboration, D. Acosta et al., Phys. Rev. Lett. 95 (2005) 131801; ATLAS TDR, CERN-LHCC-99-14

$\sigma(\mathrm{fb})$ @ 7 TeV LHC	Model A	Model B	$bar{b}bar{b}$	bbbbZ	jjb̄bZ
basic cuts					
and 4b tagging	143	271	$157 imes 10^3$	0.55	4.2
$\cancel{E}_T > 40 \text{ GeV}$	59	140	_	0.4	3.3

After selection cuts, we expect negligible background events and $\gtrsim O(10)$ events for benchmark points with 1 fb⁻¹ luminosity @ 7 TeV LHC.

LHC Constraints on NLSP Gluino (4-2-2)

M.A.Ajaib, T.Li and Q.Shafi, arXiv:1107.2573 [hep-ph]

	S1	S2	S3	b
Number of jets	≥ 2	≥ 3	≥ 4	≥ 3
Number of <i>b</i> -jets	0	0	0	≥ 1
Leading jet p_T (GeV)	> 130	> 130	> 130	> 120
Other jets p_T (GeV)	> 40	> 40	> 40	> 30
$\Delta\phi(ec{p}_T^{ m miss},j_{1,2,3})$	> 0.4	> 0.4	> 0.4	> 0.4
m _{eff} (GeV)	> 1000	> 1000	> 1000	> 600
$\mathcal{F}_{\mathcal{T}}$ (GeV)	> 130	> 130	> 130	> 100
\mathcal{E}_T/m_{eff}	> 0.3	> 0.25	> 0.25	> 0.2
ATLAS $\sigma_{ m exp}$ (pb)	35	30	35	0.32

Table: Summary of selection cuts and 95% C.L. upper limits on effective cross section for non-SM processes for signal region S1, S2, S3 with 165 $\rm pb^{-1}$ luminosity, and region b with 35 $\rm pb^{-1}$ luminosity, following ATLAS data analyses.

NLSP gluino masses below $\sim 350~\text{GeV}$ in 4-2-2 model are excluded by the LHC data.

LHC constraints on the spin-independent (spin-dependent) neutralino-nucleon cross section are significantly more stringent than the bounds from XENON 100/CDMS (IceCube DeepCore).

Summary and Discussion

- To accommodate correct relic abundance of bino dark matter, gluino co-annihilation is an important scenario which induces NLSP gluino solution.
- A new search for NLSP gluino involving multi-b final states, arising from the three-body decay $\tilde{g} \to b \bar{b} \tilde{\chi}^0_1$
- For the 7 TeV LHC with 1 fb $^{-1}$ integrated luminosity, the number of signal events for 4-2-2 model is $\gtrsim O(10)$, to be compared with negligible SM background events.
- \bullet NLSP gluino masses below \sim 350 GeV in 4-2-2 model are excluded by LHC data.
- LHC constraints on the neutralino-nucleon cross section are more stringent than current dark matter direct detection experiments.

- Public LHC searches not designed to probe NLSP gluino
- "Squashed" spectra and scenarios evade the bounds: miss something in low energy?
- Need dedicated study: improved b-tagging to probe low pt, low \mathcal{E}_T multi-b jets signature; may use hard ISR (monojet+missing energy result at 1 fb⁻¹)

ATLAS Collaboration, EPS-HEP2011

Thank You!